Answer:
Explanation:
V₀ = 0 m/s
V = 41 m/s
S = 480 m
___________
a - ?
Distance traveled:
S = (V² - V₀²) / (2*a)
Acceleration :
a = (V² - V₀²) / (2*S)
a = (41² - 0²) / (2*480) = 1.75 m/s²
Answer: The correct answer is option (C).
Explanation:
As it is given in the problem, the path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the same mass falls to Jupiter's surface due to its gravitational force.
According to Newton's law of universal gravitational, every particle attracts every other particles in the universe with the gravitational force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
The Jupiter is the most massive planet in the solar system. It is also the largest planet in the solar system. The gravity of Jupiter on its surface is 2.4 times that of surface gravity of the Earth.
If a person weighs 100 pounds on the Earth then he would weigh 240 pounds on Jupiter.
Therefore, the correct answer is option (C), the meteor falls to Jupiter faster due to its greater gravitational force.
Use the right equation. To calculate the normal force of an object at an angle, you need to use the formula: N = m * g * cos (x) For this equation, N refers to the normal force, m refers to the object's mass, g refers to the acceleration of gravity, and x refers to the angle of incline.
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965