Answer:

Explanation:
Bases are the species which furnish hydroxide ions in the solution or is capable of forming bonds with electron deficient species as they are electron rich species. When a base accepts a proton, it changes into a acid which is known as its conjugate acid.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations. Only the species which are present in aqueous state dissociate. So, the net ionic equation of aqueous solution of ammonia is shown below as:-

Answer:
When a gas is heated, the molecules move faster, bump into each other, and spread apart. Because the molecules are spread apart, they take up more space. They are less dense.
Ionic bonds form between nonmetals and metals.
The reason ionic bonds are formed is because nonmetals and metals usually have high electronegativities, which essentially means that metals pull on nonmetals' electrons.
When a metal takes an electron from a nonmetal, the metal becomes negatively charged and the nonmetal becomes positively charged. Because opposite charges attract, the two atoms will stick together, thus forming an ionic bond
-T.B.
Depends on where you live but generally speaking it is either June or July
Answer:
39.2 g
Explanation:
- 2Ni₂O₃(s) ⟶ 4Ni(s) + 3O₂(g)
First we <u>convert 55.3 grams of Ni₂O₃ into moles of Ni₂O₃</u>, using its<em> molar mass</em>:
- 55.3 g ÷ 165.39 g/mol = 0.334 mol Ni₂O₃
Then we <u>convert 0.334 moles of Ni₂O₃ into moles of Ni</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 0.334 mol Ni₂O₃ *
= 0.668 mol Ni
Finally we <u>calculate how much do 0.668 Ni moles weigh</u>, using the<em> molar mass of Ni </em>:
- 0.668 mol Ni * 58.69 g/mol = 39.2 g