Answer:
For this angular momentum, no quantum number exist
Explanation:
From the question we are told that
The magnitude of the angular momentum is 
The generally formula for Orbital angular momentum is mathematically represented as

Where
is the quantum number
now
We can look at the given angular momentum in this form as

comparing this equation to the generally equation for Orbital angular momentum
We see that there is no quantum number that would satisfy this equation
Answer:
C. chromium is a metal that is less reactive than sodium.
Explanation:
Hello.
Given the options:
A. chromium is a nonmetal and therefore a good conductor of heat and electricity
.
B. chromium is a metal that is more reactive than potassium
.
C. chromium is a metal that is less reactive than sodium
.
D. chromium is a noble gas that is not reactive.
In this case, since chromium is in period 4 group VIB we infer it is a transition metal which slightly reacts with acids and poorly reacts with oxygen and other oxidizing substances. Thus, in comparison with both sodium and potassium which are highly reactive even with water as they get on fire, we can say that it is less reactive than both potassium and sodium, therefore, answer is: C. chromium is a metal that is less reactive than sodium.
Best regards.
Ammonia is formed by a reaction between hydrogen and nitrogen as shown by the equation below.
N2(g) + 3H2(g) = 2NH3(g)
1 mole of ammonia contains 17 g
Therefore 10.78 g of ammonia are equivalent to 10.78/17 = 0.6341 moles
The mole ratio of hydrogen to ammonia is 3 : 2
Therefore, moles of hydrogen used will be 0.6341 × 3/2 = 0.9512 moles
1 mole of hydrogen is equivalent to 2 g
Thus, the mas of hydrogen will be 0.9512 moles × 2 = 1.9023 g