Answer:
c. Compound 2 is more acidic because its conjugate base is more resonance stabilized
Explanation:
You haven't told us what the compounds are, so let's assume that the formula of Compound 1 is HCOCH₂OH and that of Compound 2 is CH₃COOH.
The conjugate base of 2 is CH₃COO⁻. It has two important resonance contributors, and the negative charge is evenly distributed between the two oxygen atoms.
CH₃COOH + H₂O ⇌ CH₃COO⁻ + H₃O⁺
The stabilization of the conjugate base pulls the position of equilibrium to the right, so the compound is more acidic than 1.
The question is partially incorrect, because nitration of <span> methyl benzoate results in generation of methyl 3-nitrobenzoate, and not methyl 2-benzoate.
This a because of the present of ester group, which deactivated benzene ring at ortho and para position. Due to this, the electrophile (NO2+) attackes on meta position.
The detailed mechanism is attached below.</span>
Answer:
113.69°k
Explanation:
V1=85L of helium V2=32L
T1= 29°C +273= 302°K T2=?
T2=<u>TIV2</u>
V1
T2=<u>(302)(32)</u>= <u>9664</u>
85 85
T2= 113.69°K
I would say water; water is extremely polar, and this is why it can break one of the strongest bonds, ionic bonds. NaCl, as you probably know, is a salt, and dissolves in water. However, the ionic bond holding the Na+ and the Cl- is extremely strong; the boiling point of NaCl is at 1413 degrees celcius (water is at 100 degrees celcius). This means that it requires A LOT of energy to break the bond, but water is able to dissolve and break the bond very easily. It is very polar, so I would answer your question with water. And the bond connecting the H and the O is a covalent bond.
None, it’s solar radiation