Heat flows from hotter to colder objects
metal rod<fire
hat>snowman
ice cube<warm water
Explanation:
It is given that,
Weight of the rock in air, W = 110 N
Since, W = mg


m = 11.22 kg
We need to find the apparent weight of the rock when it is submerged in water. Apparent weight is equal to the weight of liquid displaced i.e.

d is the density of water, 
V is the volume of rock, 

M = 3.37 kg
The apparent weight in water, W = m - M

W = 76.93 N
So, the apparent weight of the rock is 76.93 N. Hence, this is the required solution.
You will use the height of the bridge from the ground.
Solution:
Formula to be used is y=Viy(t)+g(t^2)/2
Where:
Vi=initial velocity which is 0 m/s
y=10 m
Gravitational acceleration or g =9.8m/s^2
T= time you need
Substitute all the given to the formula
10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2
10mx2=9.8m/s^2(t^2)
Now isolate the variable you want to find which is T or time
10mx2/9.8m/s^2=t^2
20m/9.8m/s^2=t^2
Square root of 2.04= square root of t^2
T=1.43 secs
The answer is 1.43 seconds
Answer:
1 watt power is defined as the 1 Joule of energy consumed per second..
We will solve this question using the second law of motion which states that force is directly equal to the product of mass and acceleration.

Where,
- F is force
- m is mass
- a is acceleration
In our case,
- F = ?
- m = 2500 kg
- a = 20m/s

<em>Thus, The force of 50000 Newton is required to accelerate a car of 2500 kg...~</em>