Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg
Since its a sphere, the top is seen first because its the tallest part if the ship. If the earth was flat, the whole ship would be seen.
Answer:
1. Our ears can sort out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone.
Explanation:
A complex tone is a sound wave that consist of two or more forms of audible sound frequencies. Sound wave is a mechanical wave that is longitudinal, and could be represented by a sine wave because of it sinusoidal manner of propagation.
A Fourier analyzer can be used to differentiate individual sine waves from a combination of two or more of it; which is as the same function performed by human ear. To the human ear, a sound wave that consist of more than one sine wave will have perceptible harmonics which would be distorted and turn to a noise.
Thus, the human ear makes it possible to hear the pure tones that make up a complex tone.
The best thing to do in order to calculate the distance of the ball taht would have traveled when it hits the ground for the fourth time is to list the height everytime it bounces. We calculate as follows:
<span>12+6+6+3+3+1.5+1.5 = 33 feet</span>
I have the same thing so if you have a teroy ok wat a thory mean is like wat you think about icecream are what ever so write down wat you thinck about ice cream