Answer:
6.48 m/s
Explanation:
We are given that
Mass,M=2 kg
Radius,R=0.25 m
Height,h=3 m
Moment of inertia of solid sphere=
We have to find the linear speed.

By law of conservation of energy


Where 
Substitute the values




Answer:
Velocity=1.1m/s
Amplitude=0.35m
Explanation:
Given:
time 't' = 2.9s
wavelength 'λ'= 5.5m
distance 'd'=0.7m
The time period 't' is the time b/w two successive waves. Therefore, the time it takes from the boat to travel from its highest point to its lowest is a half period.
So, T = 2 x 2.9 => 5.8 s
As we know that frequency is the reciprocal of time period, we have
f= 1/T = 1/5.8 =>0.2 Hz
In order to find how fast are the waves traveling, the velocity is given by
Velocity = f λ
V= 0.2 x 5.5 =>1.1m/s
The distance between the boat's highest point to its lowest point is double the amplitude.
Therefore , we can write
Amplitude 'A'= d/2 =>0.7/2 =>0.35m
Answer: Weight = 98.1N
Explanation:
Density of water = 1000 kg/m^3
Given that the Plastic foam is about 0.10 times as dense as water. That is,
Density of plastic foam = 0.1 × 1000 = 100kg/m^3
The volume V = 1 ×1×0.1 = 0.1 m^3
Density is the ratio of mass to volume
Density = mass/volume
Let us substitute for density and volume to get mass.
100 = M/0.1
Make M the subject of formula
M = 100 × 0.1 = 10 kg
Weight = mg
Where g = 9.81 m/s
Substitute the M and g into the formula
Weight = 10 × 9.81 = 98.1 N
Therefore, the weight of the brick is 98.1 N