To get the z-value of the scores of the four students, we are going to use the formula for standard score or z-score. It is score minus the mean score, then divided by standard deviation.
z= Score (X)-Mean / SD
To find the z-value of each score, we have to use a Z table. Using the z-score, we are to look first at the y-axis of the table which will highlight the first two digits of the z-score. Then, the x-axis for the second decimal place of the z-score.
You can use this as reference for the z-table: http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
Mean= 500SD= 100Scores= 560, 450, 640, 530
For the student who scored 560,z= X-Mean / SDz= 560-500 / 100z= 60 / 100z= 0.6
The score is 0.6 standard deviation above the mean. The z-value is 0.7257 or 72.57%.
For the student who scored 450,z= X-Mean / SDz= 450-500 / 100z= -50 / 100z= -0.5
The score is -0.5 standard deviation above the mean. The z-value is 0.3085 or 30.85%.
For the student who scored 640,z= X-Mean / SDz= 640-500 / 100z= 140 / 100z= 1.4
The score is 1.4 standard deviation above the mean. The z-value is 0.9192 or 91.92%.
For the student who scored 530,z= X-Mean / SDz= 530-500 / 100z= 30 / 100z= 0.3
The score is 0.3 standard deviation above the mean. The z-value is 0.6179 or 61.79%.
To find the inverse, switch the x and y, and then solve for y (f(x) is the same as y)
So we get:
x=1.50y-30 (add 30 to both sides)
x+30=1.50y (divide both sides by 1.5)
x/1.5+30/1.5=y
y=x/1.5+20
Hope this helps
99,000/10
Take away one zero from both numbers
9,900/1 = 9,900
9,900 tens, Hope this helps!
Answer:
Compound interest is the addition of interest to the principal sum of a loan or deposit, or in other words, interest on interest. It is the result of reinvesting interest, rather than paying it out, so that interest in the next period is then earned on the principal sum plus previously accumulated interest.
Step-by-step explanation: