I'm thinking the answer would be D.
I hope this helps ☺ Let me know if you have any others
Answer:The higher up an object is the greater its gravitational potential energy. The larger the distance something falls through the greater the amount of GPE the object loses as it falls. As most of this GPE gets changed into kinetic energy, the higher up the object starts from the faster it will be falling when it hits the ground. So a change in gravitational potential energy depends on the height an object moves through.
Explanation: Lifting an apple up 1 metre is easier work than lifting an apple tree the same height. This is because a tree has more mass, so it needs to be given more gravitational potential energy to reach the same height.
B is the correct answer
y=Asin(wt-kx)
A=amplitude
f=frequency
x=wavelength
since refraction is not on the wave formula,then option B is the correct answer
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!
-- If there are only <em>10</em> elements in the universe that can make compound molecules, and a compound molecule can be formed by combining 1, 2, 3, or 4 different elements, then that's already the possibility of at least 400 different molecules.
-- There are many more than 10 elements that can combine to form compound molecules.
-- Every single "<em>organic</em>" molecule, of which there are thousands, is the combination of <em>carbon</em> with other elements.
-- Most all of the substances that can be distilled out of oil, including the paraffin waxes, the alcohols, gasoline, kerosene, butane, propane, octane, and natural gas, are made of just carbon, hydrogen, and oxygen, only with different numbers of each one.
-- Plastics, drugs, rubber, and DNA are examples of molecules that are made of <em>hundreds</em> of atoms.