Answer:
The answer is 14!
Step-by-step explanation:
Answer:
(r o g)(2) = 4
(q o r)(2) = 14
Step-by-step explanation:
Given


Solving (a): (r o q)(2)
In function:
(r o g)(x) = r(g(x))
So, first we calculate g(2)




Next, we calculate r(g(2))
Substitute 9 for g(2)in r(g(2))
r(q(2)) = r(9)
This gives:


{

Hence:
(r o g)(2) = 4
Solving (b): (q o r)(2)
So, first we calculate r(2)




Next, we calculate g(r(2))
Substitute 3 for r(2)in g(r(2))
g(r(2)) = g(3)




Hence:
(q o r)(2) = 14
The complete question in the attached figure
we know that
the diagonals of a rhombus intersect to form right angles,
so
angle ACE is ----------> (90°-64°)-----------> 26°
ACE is the angle bisector of ACD, this means that ACD is ---------> 26 x 2 = 52°
The diagonals are angle bisectors to the opposite corners
so
ACD = ACB = 52°
and
BCD = 52 x 2 = 104°
For a rhombus, opposite angles are equivalent,
so
BAD = BCD = 104°
the answer is
angle BAD=104°
Answer: bro its the last one
Step-by-step explanation:
Answer:
using distance formula you can solve it