Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />
If you have 58.93g of Co it means that you only have 1 mol (use a periodic table to find the answer, if you had more find it by proportion, it's easier).
There's 6.022 x 10^23 atoms per mol so you have 6.022 x 10^23 atoms of Co.
(once again if you had more mol, you could find the answer by proportions).
Answer: The amount of water formed is 12 moles
Explanation: Please see the attachments below
1. temperature is dependent
2. energy is independent
3. the graph looks like a line sloping upward
4. the line means that as energy increases the temperature also increases
5. a straight line would mean that as energy increases temperature remains constant
sorry that's all I can do