Answer:
[Top row] - Chemical bonds
[2nd Row L-R] - Force, Ionic, Covalent
[3rd Row L-R] - Atoms, Lost or Gained, Shared
[4th Row L-R] - More stable, Metal and Nonmetal, Nonmetal and Nonmetal
Explanation:
<u>Chemical bonds</u> are a<u> </u><u>force</u> that hold together <u>atoms</u> in a substance to make compounds <u>more stable.</u>
<u>Chemical bonds</u> include two kinds: <u>Ionic</u> and <u>Covalent.</u>
<u>Ionic</u> in which electrons are <u>lost or gained</u> where attraction is between a <u>Metal and Nonmetal.</u>
<u>Covalent</u> in which electrons are shared where attraction is between a <u>nonmetal and nonmetal</u>.
I have been able to fill the concept map using the correct terms or phrases. The concept map talks about chemical bonds. There are two types of chemical bonds; which ionic bond and covalent bond.
Answer:
A. your running speed 1.5 m/s
B. your mass 70 kg
C. your de Broglie wavelength
m
Explanation:
Hello there!
In this case, since the equation for the calculation of the Broglie wavelength is:

We can assume a running speed of about 1.5 m/s and a mass of 70 kg, so the resulting Broglie wavelength is:

Best regards!
I think 1.00 mol sorry if I’m wrong
Answer:
The name of this compound is :
Bi2(CO3)3 = Bismuth Carbonate
Explanation:
The name of the compound is derived from the name of the elements present in it.
The rule followed while naming the compound are:
1. The first element (always the cation) is named as such .
2. The second element (The anion) end with "-ate , -ide ," etc
3. NO prefix is added while naming the first element.
For example : Bi2 can't be named as Dibismuth
Na2 = Can't be named as disodium
Hence the compound :
Bi2(CO3)3 contain two element : Bi and CO3. Here , Bi = cation (named as such) and CO3 = anion (named according to rules)
Bi = Bismuth
CO3 = carbonate
Bi2(CO3)3 = Bismuth Carbonate
The molecular mass of this compound is :
Molecular mass = 2 (mass of Bi) + 3(mass of C) + 6(mass of O)
= 2 (208.98)+3(12.01)+6(15.99)
= 597.987 u
Answer:
The concentration the student should write down in her lab is 2.2 mol/L
Explanation:
Atomic mass of the elements are:
Na: 22.989 u
S: 32.065 u
O: 15.999 u
Molar mass of sodium thiosulfate, Na2S2O3 = (2*22.989 + 2*32.065 + 3*15.999) g/mol = 158.105 g/mol.
Mass of Na2S2O3 taken = (19.440 - 2.2) g = 17.240 g.
For mole(s) of Na2S2O3 = (mass taken)/(molar mass)
= (17.240 g)/(158.105 g/mol) = 0.1090 mole.
Volume of the solution = 50.29 mL = (50.29 mL)*(1 L)/(1000 mL)
= 0.05029 L.
To find the molar concentration of the sodium thiosulfate solution prepared we use the formula:
= (moles of sodium thiosulfate)/(volume of solution in L)
= (0.1090 mole)/(0.05029 L)
= 2.1674 mol/L