Answer:
4 m/s
Explanation:
m1 = m2 = m
u1 = 20 m/s, u2 = - 12 m/s
Let the speed of composite body is v after the collision.
Use the conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
m x 20 - m x 12 = (m + m) x v
20 - 12 = 2 v
8 = 2 v
v = 4 m/s
Thus, the speed of teh composite body is 4 m/s.
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
Explanation:
The area between the speed-time graph f a body and time axis measures the distance travelled by the body
It moves to 56 km per hours
<u>Answer:</u>
<em>The moon doesn’t change shape on its own.</em>
<u>Explanation:</u>
Shapes of moon that we observe is based on the different perspectives of view from the earth and position of moon with respect to the sun. The changes arise due to the rotation of earth on its own axis as well as the revolution of moon on its orbit. The moon doesn’t have any light of its own.
It just reflects off the light from the sun. Due to tidal locking phenomenon one face of the moon permanently faces the sun. Because of the changes in position of moon with respect to the sun the moon is lighted up variably giving rise to various phases like new moon, full moon, crescent etc.