Lunar phase is the same wherever on Earth you observe
<span>Last (third) quarter rises at midnight, sets at noon. </span>
<span>First quarter rises at noon, sets at midnight</span>
The answer to fill in the blank in the question above is "greater than" based on the physic of the air density. The density of air is affected by the temperature and the pressure based on the ideal gas law. A high pressure will make the air becomes denser and the bottom of swimming pool has a higher pressure than the surface<span>.</span>
Neutral. A neutron doesn’t have a positive charge like a proton or a negative charge like an electron.
a. Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
b.
is the total time taken in the trip
c.
is the total distance
d.
towards right from the starting point.
e. 
f.
towards right.
Explanation:
a.
Speed is a scalar quantity while velocity is a vector quantity.
Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
Speed is a directionless quantity while velocity constitutes direction.
b.
<em>Total time of round trip when we're given:</em>
- distance travelled to the right,

- speed while travelling to the right,

- time spent at gas station,

- time spent while travelling back towards the left,

- speed while travelling to the left,

<em>Now time taken for travelling towards right:</em>



<u>Therefore total time taken in the round trip:</u>



c.
<em>Now, distance travelled towards left:</em>



<u>Therefore total distance:</u>



d.
Now, total displacement:


towards right from the starting point.
e.
<u>Average speed:</u>



f.
<u>Average velocity:</u>


towards right.
Answer:
The car would speed off 2x's as fast as the speed of the heavy truck provided the the collision is an elastic collision where there's no or little friction occurring within the scenario.
Explanation:
Newton's law proves that an object with a greater mass can move objects of lesser mass at greater distances and speed.