IT IS EASIER TO CLIMB A SLANTED SLOPE
When an object is dropped, tossed, or kicked, as long as it is not laying on the ground, it accelerates downward, because of the force of gravity acting on it.
The force on a 64 k person decelerating on that rate would be :
F = ma
F = 64 kg x 30 x 9.8
= 18816 N
Hope this helps
Explanation:
first answer is that the to and fro movement of a pendulum is known as amplitude
Answer:
a) The maximum height the ball will achieve above the launch point is 0.2 m.
b) The minimum velocity with which the ball must be launched is 4.43 m/s or 0.174 in/ms.
Explanation:
a)
For the height reached, we use 3rd equation of motion:
2gh = Vf² - Vo²
Here,
Vo = 3.75 m/s
Vf = 0m/s, since ball stops at the highest point
g = -9.8 m/s² (negative sign for upward motion)
h = maximum height reached by ball
therefore, eqn becomes:
2(-9.8m/s²)(h) = (0 m/s)² - (3.75 m/s²)²
<u>h = 0.2 m</u>
b)
To find out the initial speed to reach the hoop at height of 3.5 m, we again use 3rd eqn. of motion with h= 3.5 m - 2.5m = 1 m (taking launch point as reference), and Vo as unknown:
2(-9.8m/s²)(1 m) = (0 m/s)² - (Vo)²
(Vo)² = 19.6 m²/s²
Vo = √19.6 m²/s²
<u>Vo = 4.43 m/s</u>
Vo = (4.43 m/s)(1 s/1000 ms)(39.37 in/1 m)
<u>Vo = 0.174 in/ms</u>
<u />