The negative ion reactions that consist of the formation of carbon dioxide in the atmosphere is generally an exothermic reaction. By definition, an exothermic reaction takes place when the chemical process eventually releases heat as its by-product. It is in contrast in endothermic process wherein heat is absorbed.
This may seem confusing because they give you two masses, but all you have to do is pick one to do the calculations. Personally, I would pick O2, since the molar mass is easier to calculate. The answer would be 3.3 g (rounded for sig figs). To get this, first take the 5.9 grams of O2 and convert it to moles by dividing by the molar mass of oxygen gas, which is 32. Then, multiply both by the mole-mole ratio, which is 2:2, or simply 1:1. After that, multiply that by 18g, which is the molar mass of water to get grams of water.
REMEMBER, you have to write and balance the chemical equation before you can do any of that work.
That happens to be CH4 + 2O2 => CO2 + 2H2O
Answer:
(1) the surface area of the solute,
(2) the temperature of the solvent,
(3) the amount of agitation that occurs when the solute and the solvent are mixed.
Explanation:
The volume<span> of </span>gas<span> because of the </span>increase<span> and decrease in the speed in which the molecules bounce around. ... Boyle's Law states that if temperature stays the same, the </span>amount of<span> space a </span>gas takes up will increase<span> if the </span>pressure<span> decreases. The </span>amount of gas<span> will take up less space if the </span>pressure<span> is increased. this would be the correct answer </span>
Hydrochloric acid on a rock or mineral and watching for bubbles of carbon dioxide gas to be released. The bubbles signal the presence of carbonate minerals such as calcite and dolomite.