Consider the halogenation of ethene is as follows:
CH₂=CH₂(g) + X₂(g) → H₂CX-CH₂X(g)
We can expect that this reaction occurring by breaking of a C=C bond and forming of two C-X bonds.
When bond break it is endothermic and when bond is formed it is exothermic.
So we can calculate the overall enthalpy change as a sum of the required bonds in the products:
Part a)
C=C break = +611 kJ
2 C-F formed = (2 * - 552) = -1104 kJ
Δ H = + 611 - 1104 = - 493 kJ
2C-Cl formed = (2 * -339) = - 678 kJ
ΔH = + 611 - 678 = -67 kJ
2 C-Br formed = (2 * -280) = -560 kJ
ΔH = + 611 - 560 = + 51 kJ
2 C-I Formed = (2 * -209) = -418 kJ
ΔH = + 611 - 418 = + 193 kJ
Part b)
As we can see that the highest exothermic bond formed is C-F bond so from bond energies we can found that addition of fluoride is the most exothermic reaction
An increase in the atmospheric concentrations of greenhouse gases produces a positive climate forcing, or warming effect. From 1990 to 2015, the total warming effect from greenhouse gases added by humans to the Earth's atmosphere increased by 37 percent.
Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around. ... Gaseous matter is composed of particles packed so loosely that it has neither a defined shape nor a defined volume.
Answer:
Yes.
Explanation:
Zn2+ is the zinc ion in aqueous solution.
Zinc is a transition metal.
These metals are in the middle of the periodic table and have similar properties.
Answer:
For large rivers the problem is not simply a matter of deduction of consumptive use from runoff: it is more complex and the complexity is related to the changes in .
Explanation: