<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
Answer:
x = 2
Step-by-step explanation:
6x-1=11
Add 1 to each side
6x-1+1=11+1
6x = 12
Divide by 6
6x/6 = 12/6
x = 2
Answer:
64x+56 & 24x+56
Step-by-step explanation:
I hope this is what you mean because this is not an equation as it is not set equal to anything.
Both problems solved by distributive property -
8*8x + (8*7) = 64x+56
8*3x + (8*7) = 24x+56
Answer:
The point-slope form of this equation would be y + 3 = 1/2(x - 6)
Step-by-step explanation:
In order to find this, start with the base form of point-slope form.
y - y1 = m(x - x1)
Now input the slope for m and the point for (x1, y1)
y - -3 = 1/2(x - 6)
y + 3 = 1/2(x - 6)