Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
<span>Cytoplasm: <span>the entire contents of the cell, exclusive of the nucleus and bounded by the plasma membrane.
Hope this helped. :)</span></span>
Concept:
Frequency- It is defined as the number of oscillations occur in one second.
Its SI unit is Hertz (Hz)
Given: Produced sound vibrations is 18,500 cycles in 0.75 seconds
∵ In 0.75 second, produced sound has oscillations = 18,500 cycles
∴ In 1.0 second, produced sound has oscillations = (18,500 ÷ 0.75) Hz
The frequency of the sound will be ≈ 24,667 Hz
From the study of the given graph, only the animals (c) Cats, (b) Moths and (a) Bats can hear the produced sound because their upper audible frequency range is greater than 24,667 Hz.
Answer:
Frequency, f = 1 unit
Explanation:
It is given that,
Period of the wave, T = 1 unit
We need to find the frequency of the wave. There exist an inverse relationship between period and the frequency of the wave. It is given by :

Or


f = 1 unit
So, the frequency of the wave is 1 unit. Hence, this is the required solution.
Answer:
<em> 508Hz</em>
Explanation:
A tuning fork with a frequency of 512 Hz is used to tune a violin. When played together, beats are heard with a frequency of 4 Hz. The string on the violin is tightened and when played again, the beats have a frequency of 2 Hz. The original frequency of the violin was ______.
When two sound waves of different frequency approach your ear, the alternating constructive and destructive interference causes the sound to be alternatively soft and loud - this phenomenon is beat production
frequency is the number of oscillation a wave makes in one seconds.
f1-f2=beats
therefore f1=512Hz
f2=?
beats=4Hz
512Hz-f2=4Hz
f2=512-4
f2=508Hz
the original frequency of the violin is 508Hz