Answer:
the velocity is 10 m/s
Explanation:
Using the expression for kinetic energy we have:
![Ek=\frac{1}{2} *m*v^{2} \\\\Ek=100J\\m=2kg\\v=\sqrt{(2*100/2)}\\ v=10[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5C%5C%5CEk%3D100J%5C%5Cm%3D2kg%5C%5Cv%3D%5Csqrt%7B%282%2A100%2F2%29%7D%5C%5C%20v%3D10%5Bm%2Fs%5D)
Potholder should have high insulation and low conductivity, therefore the correct answer is the option B
<h3>What is insulation?</h3>
Insulation is a type of material used to create barriers to the transmission of the form of energy which either is in form of heat or electricity.
For outdoor trips in cold weather, several thin layers act as better insulating barriers for heat transfer.
The ability of an electric charge or heat to pass through a material is measured by its conductivity. A material is considered a conductor if it offers very little resistance to the flow of thermal or electric energy.
Thus, Potholders should be highly insulated and have low conductivity, therefore the correct answer is the option B
Learn more about insulation from here
brainly.com/question/14363642
#SPJ1
your question seems incomplete, the complete question is
To be effective, a pot holder should have low _____. viscosity conductivity malleability density
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:


Answer:
pretty sure its B if it isnt im so so sorry
Explanation: