Answer:
The maximum speed will be 26.475 m/sec
Explanation:
We have given mass of the toy m = 0.50 kg
radius of the light string r = 1 m
Tension on the string T = 350 N
We have to find the maximum speed without breaking the string
For without breaking the string tension must be equal to the centripetal force
So 
So 

v = 26.475 m /sec
So the maximum speed will be 26.475 m/sec
6. D
7. D
8. B
let me know if you need clarification
Answer:
22.11 m / s
Explanation:
The falcon catches the prey from behind means both are flying in the same direction ( suppose towards the left )
initial velocity of falcon = 28 cos 35 i - 28 sin 35 j
( falcon was flying in south east direction making 35 degree from the east )
momentum = .9 ( 28 cos 35 i - 28 sin 35 j )
= 20.64 i - 14.45 j
initial velocity of pigeon
= 7 i
initial momentum = .325 x 7i
= 2.275 i
If final velocity of composite mass of falcon and pigeon be V
Applying law of conservation of momentum
( .9 + .325) V = 20.64 i - 14.45 j +2.275 i
V = ( 22.915 i - 14.45 j ) / 1.225
= 18.70 i - 11.8 j
magnitude of V
= √ [ (18.7 )² + ( 11.8 )²]
= 22.11 m / s
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.