Answer: Work done = 153.125Joules, Work done = 0.003Nm
Explanation:
Kinetic energy of a body is the energy possessed by a body by virtue of its motion.
Mathematically,
K.E = 1/2MV²
Where;
M = mass of the body = 2.5g = 0.0025kg
V = velocity of the body = 350m/s
Substituting this values in the formula, we have;
K.E = 1/2× 0.0025×350²
K.E = 153.125Joules
Work done is the force applied to body to cause it to move through a distance.
Work = Force × distance
Force = ma = 0.0025 × 10
Force = 0.025N
Distance = 12cm = 0.12m
Work = 0.025×0.12
Work = 0.003Nm
work done by the tree in stopping the bullet is 0.003N
Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure
Answer:

Explanation:
As we know that the displacement of the particle from the mean position is 1/5 times of its amplitude
so we have


so now we have

now we have

so the phase other particle in opposite direction is given as

so we have phase difference given as

