Answer:
<em>Alkali metals are among the most reactive metals. This is due in <u>part to their larger atomic radii and low ionization energies.</u> They tend to donate their electrons in reactions and have an oxidation state of +1. ... All these characteristics can be attributed to these elements' large atomic radii and weak metallic bonding.</em>
Explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>#</em><em>C</em><em>A</em><em>R</em><em>R</em><em>Y</em><em>O</em><em>N</em><em>L</em><em>E</em><em>R</em><em>A</em><em>N</em><em>I</em><em>N</em><em>G</em>
A.Transform
B.Divergent
C. Convergent
Answer:
I dont know if this is correct.. but maybe in the tool row, put graduated cylinder because you use graduated cylinders to measure water and for units put milliliters or liters?? Sorry if this isnt correct i wouldnt know what else to put !
Explanation:
Hello!
To solve this problem we are going to use the
Henderson-Hasselbach equation and clear for the molar ratio. Keep in mind that we need the value for Acetic Acid's pKa, which can be found in tables and is
4,76:
![pH=pKa + log ( \frac{[CH_3COONa]}{[CH_3COOH]} )](https://tex.z-dn.net/?f=pH%3DpKa%20%2B%20log%20%28%20%5Cfrac%7B%5BCH_3COONa%5D%7D%7B%5BCH_3COOH%5D%7D%20%29%20)
![\frac{[CH_3COOH]}{[CH_3COONa}= 10^{(pH-pKa)^{-1}}=10^{(4-4,76)^{-1}}=5,75](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BCH_3COOH%5D%7D%7B%5BCH_3COONa%7D%3D%2010%5E%7B%28pH-pKa%29%5E%7B-1%7D%7D%3D10%5E%7B%284-4%2C76%29%5E%7B-1%7D%7D%3D5%2C75%20)
So, the mole ratio of CH₃COOH to CH₃COONa is
5,75Have a nice day!