Answer:
3300.85 g
Explanation:
Given data:
Mass of ZnCl₂ produced = ?
Mass of H₂ produced = 49.8 g
Solution:
Chemical equation:
Zn + 2HCl → ZnCl₂ + H₂
Number of moles of H₂:
Number of moles = mass/molar mass
Number of moles = 49.8 g/ 2.056 g/mol
Number of moles = 24.22 mol
Now we will compare the moles of H₂ with ZnCl₂ form balance chemical equation.
H₂ : ZnCl₂
1 : 1
24.22 : 24.22
Mass of ZnCl₂:
Mass = number of moles × molar mass
Mass = 24.22 × 136.286 g/mol
Mass = 3300.85 g
Answer:
Dissolving a salt of a weak acid or base in water is an example of a hydrolysis reaction. Strong acids may also be hydrolyzed. For example, dissolving sulfuric acid in water yields hydronium and bisulfate.
Explanation:
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
The water molecules will flow from b to a due to osmosis.
Osmosis is where water molecules will flow from a region of higher water potential to a region of lower water potential, through a selectively permeable membrane.
When the water molecule concentration is higher, it has a higher water potential top. Water potential is the tendency for them to flow to a lower region.
The net movement will stop until both sides of the solution has a same water potential.