Answer:
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
Explanation:
We will first write the balanced equation for this scenario
3 CaCl2 + 2 Na3PO4 ----> 6 NaCl + Ca3 (PO4)2
3 Mg(NO3)2 + 2 Na3PO4 -----> 6 NaNO3 + Mg3 (PO4)2
The ratio here for both calcium chloride and magnesium nitrate is 
The number of moles of each compound is equal to
Using the mole ratio of 3:2, convert each to moles of sodium phosphate.
mole of CaCl2 is equal to
Na3PO4
mole of CaCl2 is equal to
Na3PO4
Converting moles of sodium phosphate to grams of sodium phosphate we get
g/mol
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
Yes, an OH group from ethanol can form a hydrogen bond to the ether O atom in the same way as it can do so with the single-bonded O atom in the ester.
The O atom in the carbonyl group of the ester can also form H-bonds with ethanol.
For #4 first find the molar mass(M) of copper then use that and the mass (m) n=m/M to find moles(n) using moles and the volumes find the concentration using c=n/V