Answer:
The magnesium will burn until consumed entirely. There is much more oxygen available in the atmosphere than needed to consume the magnesium. Thus the magnesium is the limiting reactant because it determines the amount of product formed.
Explanation:
Mg produces less amount of MgO than O2; therefore Mg is the limiting reagent. O2 produces more amount of MgO than Mg; therefore O2 is the excess reagent.
Answer:
The formula for the anhydrous compound that was part of the mixture called natron that was used by the Egyptians is Na2(CO3)10(H2O).
They use this compound for medicine, cookery, agriculture, in glass-making and to dehydrate egyptian mummies.
Compound of sodium carbonate and sodium bicarbonate was the name of the resulting hydrate that formed.
Answer: Yes,
is a strong acid.
acid =
, conjugate base =
, base =
, conjugate acid = 
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
Yes
is a strong acid as it completely dissociates in water to give
ions.

For the given chemical equation:

Here,
is loosing a proton, thus it is considered as an acid and after losing a proton, it forms
which is a conjugate base.
And,
is gaining a proton, thus it is considered as a base and after gaining a proton, it forms
which is a conjugate acid.
Thus acid =
conjugate base =
base = 
conjugate acid =
.
Answer:
A. 2C + H₂ ⟶ CH₄
Explanation:
A. 2C + H₂ ⟶ CH₄
UNBALANCED. 2C on the left and 1C on the right
B. 2Al₂O₃ ⟶ 4Al + 3O₂
Balanced. Same number of each type of atom on each side.
C. 2H₂O₂ ⟶ 2H₂O + O₂
Balanced. Same number of each type of atom on each side.
D. 2C₂H₆ + 7O₂ ⟶ 4CO₂ + 6H₂O
Balanced. Same number of each type of atom on each side.
Covalent compounds
All the best