Answer:
Please take this hepful hint :
F = m * a
6.2 = 2.3 * a
a = 2.7 m/s^2
Explanation:
Answer:
e- 7.25 x 10³.
Explanation:
∵ ΔG = -RTlnK,
where, ΔG is the free energy change.
R is the general gas constant (R = 8.324 J/mol.K).
K is the equilibrium constant of the reaction.
- For the reaction: <em>N₂(g) + 3H₂(g) → 2NH₃(g),</em>
K = (PNH₃)²/(PN₂)(PH₂)³ = (0.65)²/(1.9)(1.6)³ = 5.43 x 10⁻².
∵ ΔG = -RTlnK.
∴ ΔG = -(8.314 J/mol.K)(298 K) ln(5.43 x 10⁻²) = 7.218 x 10³ J/mol.
Answer:
H₂ is excess reactant and O₂ the limiting reactant
Explanation:
Based on the chemical reaction:
2H₂(g) + O₂(g) → 2H₂O
<em>2 moles of H₂ react per mole of O₂</em>
<em />
To find limiting reactant we need to convert the mass of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
10g H₂ * (1mol / 2.016g) = 4.96 moles
<em>Moles O₂ -Molar mass: 32g/mol-:</em>
22g O₂ * (1mol / 32g) = 0.69 moles
For a complete reaction of 0.69 moles of O₂ are needed:
0.69mol O₂ * (2mol H₂ / 1mol O₂) = 1.38 moles of H₂
As there are 4.96 moles,
<h3>H₂ is excess reactant and O₂ the limiting reactant</h3>
The density of the unknown metal, given the data is 1.67 g/mL
<h3>What is density? </h3>
The density of a substance is simply defined as the mass of the subtance per unit volume of the substance. Mathematically, it can be expressed as
Density = mass / volume
With the above formula, we can determine the density of the unknown metal. Details below:
<h3>How to determine the density </h3>
- Mass of unknown metal = 20 - 0 = 20 g
- Volume of unknown metal = 12 - 0 = 12 mL
- Density of unknown metal =?
Density = mass / volume
Density of unknown metal = 20 / 12
Density of unknown metal = 1.67 g/mL
Thus, the density of unknown metal is 1.67 g/mL
Learn more about density:
brainly.com/question/952755
#SPJ1