<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:

Answer:
Explanation:

from steam tables , at 250 kPa, and at
T₁ = 80⁰C ⇒ h₁ = 335.02 kJ/kg
T₂ = 20⁰C⇒ h₂ = 83.915 kJ/kg
T₃ = 42⁰C ⇒ h₃ = 175.90 kJ/kg
we know


according to energy balance equation


Answer:All three states of matter (solid, liquid and gas) expand when heated. ... Heat causes the molecules to move faster, (heat energy is converted to kinetic energy ) which means that the volume of a gas increases more than the volume of a solid or liquid.
Explanation:well I tried lol she just copied and pasted faster than I could
To solve this problem, apply the concepts related to the calculation of the work performed according to the temperature change (in an ideal Carnot cycle), for which you have to:

Where,
C = Heat capacity of the Brick
= Cold Temperature
= Hot Temperature
Integrating,

Our values are given as


Replacing,



Therefore the work perfomed by this ideal carnot engine is 58kJ