1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
3 years ago
10

A bungee jumper with mass 60.0 kg jumps from a high bridge. After reaching his lowest point, he oscillates up and down, hitting

a low point eight more times in 49.0 s. He finally comes to rest 30.0 m below the level of the bridge.
1) Calculate the spring constant of the bungee cord.2) Calculate the unstretched length of the bungee cord.
Physics
2 answers:
Liula [17]3 years ago
7 0

Answer:

a) Spring constant,k = 63.09 N/m

b) Unstretched length = 20.68 m          

Explanation:

a) Mass of the bungee jumper, M = 60 kg

time for complete oscillation, t = 49 s

Number of oscillations, n = 8

The period of oscillation, T = t/n

T = 49/8

T = 6.125 s

To calculate the spring constant of the bungee cord, use the formula:

T = 2\pi \sqrt{\frac{M}{k} }

6.125 = 2\pi \sqrt{\frac{60}{k} } \\6.125/2\pi = \sqrt{\frac{60}{k} }\\0.975^2 = 60/k\\0.951 = 60/k\\k = 60/0.951\\

Spring constant,k = 63.09 N/m

b) The extension in the spring is given by the formula:

x = mg / K

x = (60*9.8)/63.09

x = 9.32 m

extension, x = final length - original length

Original length = Final length - extension

Original length = 30 - 9.32

Original length = 20.68m                                

Unstretched length = 20.68 m            

oksano4ka [1.4K]3 years ago
5 0

Answer:

1) 10.05 N/m

2) 20.69 m

Explanation:

1) If the jumper completes 8 cycles in 49 seconds, then the period of each cycles is T = 49/8 = 6.125 s

From this info we can calculate the spring constant, treating this as simple harmonic motion k:

T = 2\pi\sqrt{\frac{m}{k}}

\frac{m}{k} = \frac{T^2}{4\pi^2}

k = \frac{4\pi^2 m}{T^2} = \frac{4\pi^2 60}{6.125^2} = 63.14 N/m

2) Let g = 9.8 m/s2. So the jumper weight is F = mg = 60*9.8 = 588 N. With this force the jumper would have stretched the bungee a length of

x = F/k = 588 / 63.14 = 9.31 m

As the jumper is at rest 30m below the bridge and the cord is stretched by 9.31m. Then its original length would be 30 - 9.31 = 20.69 m

You might be interested in
10 rectangular object's mass from greatest to least. You can choose books, sandwiches, phones, pictures - as long as the shape i
Greeley [361]

Answer: 1 is phone 2 is sandwich, Last is picture.

Explanation: I hoped That Helped !!

7 0
3 years ago
How is the independent variable affected by the dependent variable
stiv31 [10]

Answer:

A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.

- I'm reading this back and it doesn't make much sense, if you want me to reword this I can

5 0
3 years ago
Two resistors, R1 and R2, are
dlinn [17]

The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:

1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)

1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)

<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω

3 0
3 years ago
A +12 μC charge and -8 μC charge are 4 cm apart. Find the magnitude and direction of the E-field at the point midway between t
Natasha_Volkova [10]

Answer:

Explanation:

Given

Charge of first Particle q_1=+12\ \mu C

Charge of second Particle q_2=-8\ \mu C

distance between them d=4\ cm

k=9\times 10^{9}

magnetic field due to first charge at mid-way between two charged particles is

E_1=\frac{kq_1}{r^2}

r=\frac{d}{2}=\frac{4}{2}=2\ cm

E_1=\frac{9\times 10^9\times 12\times 10^{-6}}{(2\times 10^{-2})^2}

E_1=27\times 10^7\ N/C (away from it)

Electric field due to q_2=-8\ \mu C

E_2=\frac{kq_2}{r^2}

E_2=-\frac{9\times 10^9\times 8\times 10^{-6}}{(2\times 10^{-2})^2}

E_2=-18\times 10^7\ N/C(towards it)

E_{net}=E_1+E_2

E_{net}=9\times 10^7\ N/C(away from first charge)        

8 0
3 years ago
During the class prize-giving ceremony, Anand clapped his hands hard while Kumar clapped his hands softly. Everybody could hear
algol13

Answer:

C - higher volume

Explanation:

The pitch or frequency of sound that an object can produce depends upon its size and configuration . The shape of hand of all are same so the frequency of sound produced by hands of all will be almost same . Hence frequency of sound produced by the hands of Anand and Kumar would have been almost the same .

But the intensity of sound produced by them would have been different . Intensity represents energy a sound carries . Hard hitting clap will produce sound of higher intensity . Intensity of sound is also called high volume sound . So Kumar's clap will carry greater energy and hence greater volume of sound .

3 0
3 years ago
Other questions:
  • Over a period of more than 30 years, albert klein of california drove 2.5 × 106 km in one automobile. consider two charges, q1 =
    5·1 answer
  • (Please help asap)
    15·1 answer
  • Use the work–energy theorem to solve each of these problems. Then use Newton’s laws to check your answers. Neglect air resistanc
    9·1 answer
  • Which form of energy is due to an object's motion?
    14·2 answers
  • What is the main function of a telescope?
    12·1 answer
  • Help me rearrange this formula. <br><br>I've been trying but I can't remember how to do it.​
    13·1 answer
  • Can someone please help me in physical science
    6·1 answer
  • A power plant to represent the need for and use for energy; label it energy production.
    5·1 answer
  • Need help in the middle one
    12·1 answer
  • Abigail runs one complete lap (400m) around the track, while Gabi runs a 50 meter dash in a straight line. Which runner had a gr
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!