Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Answer
It will stay the same!
Explanation:
If you so happen to move something from left to right, the size of it is not being shrunk or expanded in any type of way, shape, or form.
The energy of the reflected radiation<span> goes back into outer space. The other 70% of </span>solar<span> radiation that gets to </span>Earth<span> is absorbed. Most of the energy is absorbed by oceans, landforms, and living </span>things<span>. </span>
Answer:
![\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m](https://tex.z-dn.net/?f=%5Clambda%3D9.12%5Ctimes%2010%5E%7B-8%7D%7D%5Ctimes%20%5Cfrac%20%7B%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%7B1-2n%7D%5C%20m)
![\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}](https://tex.z-dn.net/?f=%5Cnu%3D3.29%5Ctimes%2010%5E%7B15%7D%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%5C%20s%5E%7B-1%7D)
Explanation:
![E_n=-2.179\times 10^{-18}\times \frac{1}{n^2}\ Joules](https://tex.z-dn.net/?f=E_n%3D-2.179%5Ctimes%2010%5E%7B-18%7D%5Ctimes%20%5Cfrac%7B1%7D%7Bn%5E2%7D%5C%20Joules)
For transitions:
![Energy\ Difference,\ \Delta E= E_f-E_i =-2.179\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J](https://tex.z-dn.net/?f=Energy%5C%20Difference%2C%5C%20%5CDelta%20E%3D%20E_f-E_i%20%3D-2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B1%7D%7Bn_f%5E2%7D-%5Cfrac%7B1%7D%7Bn_i%5E2%7D%29%5C%20J%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B1%7D%7Bn_i%5E2%7D%20-%20%5Cdfrac%7B1%7D%7Bn_f%5E2%7D%29%5C%20J)
![n_i=n\ and\ n_f=n-1](https://tex.z-dn.net/?f=n_i%3Dn%5C%20and%5C%20n_f%3Dn-1)
Thus solving it, we get:
![\Delta E=2.179\times 10^{-18}(\frac{1}{n^2} - \dfrac{1}{{(n-1)}^2})\ J](https://tex.z-dn.net/?f=%5CDelta%20E%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B1%7D%7Bn%5E2%7D%20-%20%5Cdfrac%7B1%7D%7B%7B%28n-1%29%7D%5E2%7D%29%5C%20J)
![\Delta E=2.179\times 10^{-18}(\frac{{(n-1)}^2-n^2}{{{(n-1)}^2}\times n^2}})\ J](https://tex.z-dn.net/?f=%5CDelta%20E%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B%7B%28n-1%29%7D%5E2-n%5E2%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%29%5C%20J)
![\Delta E=2.179\times 10^{-18}(\frac{n^2+1-2n-n^2}{{{(n-1)}^2}\times n^2}})\ J](https://tex.z-dn.net/?f=%5CDelta%20E%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7Bn%5E2%2B1-2n-n%5E2%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%29%5C%20J)
![\Delta E=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J](https://tex.z-dn.net/?f=%5CDelta%20E%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%29%5C%20J)
Also, ![\Delta E=\frac {h\times c}{\lambda}](https://tex.z-dn.net/?f=%5CDelta%20E%3D%5Cfrac%20%7Bh%5Ctimes%20c%7D%7B%5Clambda%7D)
Where,
h is Plank's constant having value ![6.626\times 10^{-34}\ Js](https://tex.z-dn.net/?f=6.626%5Ctimes%2010%5E%7B-34%7D%5C%20Js)
c is the speed of light having value ![3\times 10^8\ m/s](https://tex.z-dn.net/?f=3%5Ctimes%2010%5E8%5C%20m%2Fs)
So,
![\frac {h\times c}{\lambda}=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J](https://tex.z-dn.net/?f=%5Cfrac%20%7Bh%5Ctimes%20c%7D%7B%5Clambda%7D%3D2.179%5Ctimes%2010%5E%7B-18%7D%28%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%29%5C%20J)
![\lambda=\frac {6.626\times 10^{-34}\times 3\times 10^8}{2.179\times 10^{-18}}\times \frac {{{{(n-1)}^2}\times n^2}}{{1-2n}}\ m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%20%7B6.626%5Ctimes%2010%5E%7B-34%7D%5Ctimes%203%5Ctimes%2010%5E8%7D%7B2.179%5Ctimes%2010%5E%7B-18%7D%7D%5Ctimes%20%5Cfrac%20%7B%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%7B%7B1-2n%7D%7D%5C%20m)
So,
![\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m](https://tex.z-dn.net/?f=%5Clambda%3D9.12%5Ctimes%2010%5E%7B-8%7D%7D%5Ctimes%20%5Cfrac%20%7B%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%7B1-2n%7D%5C%20m)
Also, ![\Delta E=h\times \nu](https://tex.z-dn.net/?f=%5CDelta%20E%3Dh%5Ctimes%20%5Cnu)
So,
![h\times \nu=2.179\times 10^{-18}\frac{1-2n}{{{(n-1)}^2}\times n^2}}](https://tex.z-dn.net/?f=h%5Ctimes%20%5Cnu%3D2.179%5Ctimes%2010%5E%7B-18%7D%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D)
![\nu=\frac {2.179\times 10^{-18}}{6.626\times 10^{-34}}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}](https://tex.z-dn.net/?f=%5Cnu%3D%5Cfrac%20%7B2.179%5Ctimes%2010%5E%7B-18%7D%7D%7B6.626%5Ctimes%2010%5E%7B-34%7D%7D%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%5C%20s%5E%7B-1%7D)
![\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}](https://tex.z-dn.net/?f=%5Cnu%3D3.29%5Ctimes%2010%5E%7B15%7D%5Cfrac%7B1-2n%7D%7B%7B%7B%28n-1%29%7D%5E2%7D%5Ctimes%20n%5E2%7D%7D%5C%20s%5E%7B-1%7D)
Long lasting is thought important for sustainable development because it suggest the target of economic and sustainable development without displacing means and resources of the earth.
Explanation:
Hope it helps you................
Plz mark as brainlist answer