<span>The unknown substance is silver.
I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so
273 g / 26 mL = 10.5 g/mL
Looking up a list of elements sorted by density, I see the following:
10.07 Actinium
10.22 Molybdenum
10.5 Silver
11.35 Lead
And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>
Answer:

3257806.62409 m/s
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of Sun = 
r = Radius of Star = 20 km
u = Initial velocity = 0
v = Final velocity
s = Displacement = 16 m
a = Acceleration
Gravitational acceleration is given by

The gravitational acceleration at the surface of such a star is 

The velocity of the object would be 3257806.62409 m/s
I think the answer should be that, Kinetic energy is contained in a moving object, while potential energy exists in a stored form.
Answer:
The first harmonic is: 250Hz, second harmonic 500Hz, third harmonic 750Hz.
Explanation:
Use the frequency f, speed v, and wavelentgh L relationship:

We are given the speed v=400 m/s. The base wavelength on a string of length 80cm is twice the length of the string (a "half wave" along the full length of the string), so:

The fundamental frequency (first harmonic) is 250 Hz
The second harmonic is produced by one full wave across the string (adding one node in the middle), so L=80cm in this case, therefore the second harmonic frequency is: f2 = 2*250=500Hz
the third harmonic add another node (and a half wave) to the pattern and the wavelength will be 2/3 of 80cm, so f3=3*250Hz = 750Hz