Answer:
0.782 s
Explanation:
The water flows horizontally from the hose, so its initial vertical velocity is 0.
Given:
y₀ = 3 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 m = 3 m + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.782 s
Round as needed.
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Explanation:
To find the answer use the equation speed of light=wavelength multiplied by frequency (c=lambda*f) by substituting the value for the frequency the the speed of light
Atoms involved in (polar) covalent bonds do not share their electrons equally.