Answer:
The initial volume of the system: <u>V₁ = 53.06 L</u>
Explanation:
Given: heat absorbed by system: q = 50.5 J, Pressure: P = 0.491 atm, Final volume: V₂ = 56.2 L, The change in the internal energy: ΔE = -106.0 J
Initial volume: V₁ = ? L
<u>According to the First Law of Thermodynamics</u>:
ΔE = q - PΔV
⇒ PΔV = q - ΔE = 50.5 J - (-106.0 J) = 156.5 J
As, 1 L∙atm = 101.3 J ⇒ 1 J = (1 ÷ 101.3) L∙atm
⇒ PΔV = 156.5 J = (156.5 ÷ 101.3) L∙atm = 1.54 L∙atm
So,
ΔV = 1.54 L∙atm ÷ P = 1.54 L∙atm ÷ 0.491 atm = 3.14 L
∵ ΔV = V₂ - V₁ = 3.14 L
⇒ V₁ = V₂ - 3.14 L = 56.2 L - 3.14 L = <u>53.06 L</u>
<u>Therefore, the initial volume of the system: V₁ = 53.06 L</u>
High pressure occur where air sinks.
Creates dry and hot conditions
The Second Law of Thermodynamics<span> says that processes that involve the transfer or conversion of heat energy are irreversible.</span><span> ... The First </span>Law of Thermodynamics<span> states that energy cannot be created or destroyed; the total quantity of energy in the universe stays the same.</span>
An ion is an atom that has lost or gained an electron so the relation ship you would see would be a negative or a positive one depending on if it gained or lost an electron.<span />
The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g