Answer:
A.) ![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Explanation:
The general Kb expression is:
![K_b = \frac{[HA][OH^-]}{[A^-]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BHA%5D%5BOH%5E-%5D%7D%7B%5BA%5E-%5D%7D)
In this equation
-----> Kb = equilibrium constant
-----> [HA] = acid
-----> [A⁻] = base
Since liquids are not included in equilibrium expressions, H₂O should not be present. The products are in the numerator while the reactant are in the denominator. In this reaction, CH₃NH₂ is acting as a base and CH₃NH₃⁺ is acting as an acid.
As such, the expression is:
![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
The answer to letter b is
The half-life of the reaction is 50 minutes
Data;
- Time = 43 minutes
- Type of reaction = first order
- Amount of Completion = 45%
<h3>Reaction Constant</h3>
Let the initial concentration of the reaction be X
The reactant left = (1 - 0.45) X
= 0.55 X
= X
For a first order reaction

<h3>Half Life </h3>
The half-life of a reaction is said to be the time required for the initial amount of the reactant to reach half it's original size.

Substitute the values

The half-life of the reaction is 50 minutes
Learn more on half-life of a first order reaction here;
brainly.com/question/14936355