We have x^2 + 2 · x · (11/2) + (11/2)^2 = - 24 + (11/2)^2;
Then, ( x + 11/2 )^2 = -24 + 121/4;
( x + 11/2 )^2 + 96/4 - 121/4 = 0;
( x + 11/2 )^2 - 25 / 4 = 0;
( x + 11/2 )^2 - (5/2)^2 = 0;
( x + 11/2 - 5/2)·( x + 11/2 + 5/2 ) = 0;
( x + 6/2 )·( x + 16/2 ) = 0;
( x + 3 )· ( x + 8 ) = 0;
x = - 3 or x = -8;
The first choice is the correct answer.
Answer: c= 49/4
Step-by-step explanation:
Answer:
If this is a proof then here is the answer.
Angle ABD is Congruent to Angle CBD = Given
Angle BDA is Congruent to Angle BDC = Given
Angle ABD is Congruent to Angle CBD = Definition of Angle Bisector
Line Segment BD is Congruent to Line Segment BD = Reflexive Property
Line Segment AB is Congruent to Linge Segment CB = Angle-Side-Angle or ASA
Step-by-step explanation:
Lucky for you, I just learned this also ;)
Since you are given your first two directions, put them down as GIVEN in the proof.
Next, Since ABD and CBD are congruent angles, you can assume that it is an angle bisector since angle bisectors always bisect equally.
Then, (This one is obvious), since Line Segment BD shares a side with itself, it is equal by the Reflexive Property (EX: AB is congruent to AB).
Finally, Since there is two angles with a congruent side in the middle, you can confirm that it is equal by Angle-Side-Angle.
Hope this helped!
Answer:
- hemisphere volume: 262 m³
- cylinder volume: 942 m³
- composite figure volume: 1204 m³
Step-by-step explanation:
A. The formula for the volume of a hemisphere is ...
V = (2/3)πr³
For a radius of 5 m, the volume is ...
V = (2/3)π(5 m)³ = 250π/3 m³ ≈ 261.799 m³
__
B. The formula for the volume of a cylinder is ...
V = πr²h
For a radius of 5 m and a height of 12 m, the volume is ...
V = π(5 m)²(12 m) = 300π m³ ≈ 942.478 m³
__
C. Then the total volume is ...
V = hemisphere volume + cylinder volume
V = 261.799 m³ +942.478 m³ = 1204.277 m³
__
Rounded to the nearest integer, the volumes are ...
- hemisphere volume: 262 m³
- cylinder volume: 942 m³
- composite figure volume: 1204 m³
_____
As a rule, you only want to round the final answers. Here, the numbers are such that rounding the intermediate values still gives the correct final answer. That is not always the case.