Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:
Tension of 132N
Explanation:
We need to apply Summatory of Force to find the tension in the hand.
We define te tensión in the hand as
and the Tension in fence post as
, then


We apply summatory of moments then

Where the Force 2 is 1.25m from the center of summatory,
We can note that,

We have two equation and two incognites, then replacing (1) in (2)




Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.
Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)