1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
6

A projectile is launched straight upwards at 75 m/s. Three seconds later, its velocity is...?

Physics
1 answer:
yawa3891 [41]3 years ago
4 0

Answer:

V = V0 + a t

V = 75 - 9.8 * 3 = 45.6 m/s

You might be interested in
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates
IRINA_888 [86]

Answer:

Fc = [ - 4.45 * 10^-8 j ] N  

Explanation:

Given:-

- The masses and the position coordinates from ( 0 , 0 ) are:

       Sphere A : ma = 80 kg , ( 0 , 0 )

       Sphere B : ma = 60 kg , ( 0.25 , 0 )

       Sphere C : ma = 0.2 kg , ra = 0.2 m , rb = 0.15

- The gravitational constant G = 6.674×10−11 m3⋅kg−1⋅s−2

Find:-

what is the gravitational force on C due to A and B?

Solution:-

- The gravitational force between spheres is given by:

                       F = G*m1*m2 / r^2

Where, r : The distance between two bodies (sphere).

- The vector (rac and rbc) denote the position of sphere C from spheres A and B:-

 Determine the angle (α) between vectors rac and rab using cosine rule:

                   cos ( \alpha ) = \frac{rab^2 + rac^2 - rbc^2}{2*rab*rac} \\\\cos ( \alpha ) = \frac{0.25^2 + 0.2^2 - 0.15^2}{2*0.25*0.2}\\\\cos ( \alpha ) = 0.8\\\\\alpha = 36.87^{\circ \:}

 Determine the angle (β) between vectors rbc and rab using cosine rule:

                   cos ( \beta  ) = \frac{rab^2 + rbc^2 - rac^2}{2*rab*rbc} \\\\cos ( \beta  ) = \frac{0.25^2 + 0.15^2 - 0.2^2}{2*0.25*0.15}\\\\cos ( \beta  ) = 0.6\\\\\beta  = 53.13^{\circ \:}

- Now determine the scalar gravitational forces due to sphere A and B on C:

       Between sphere A and C:

                  Fac = G*ma*mc / rac^2

                  Fac = (6.674×10−11)*80*0.2 / 0.2^2  

                  Fac = 2.67*10^-8 N

                  vector Fac = Fac* [ - cos (α) i + - sin (α) j ]

                  vector Fac = 2.67*10^-8* [ - cos (36.87°) i + -sin (36.87°) j ]

                  vector Fac = [ - 2.136 i - 1.602 j ]*10^-8 N

       Between sphere B and C:

                  Fbc = G*mb*mc / rbc^2

                  Fbc = (6.674×10−11)*60*0.2 / 0.15^2  

                  Fbc = 3.56*10^-8 N

                  vector Fbc = Fbc* [ cos (β) i - sin (β) j ]

                  vector Fbc = 3.56*10^-8* [ cos (53.13°) i - sin (53.13°) j ]

                  vector Fbc = [ 2.136 i - 2.848 j ]*10^-8 N

- The Net gravitational force can now be determined from vector additon of Fac and Fbc:

                  Fc = vector Fac + vector Fbc

                  Fc = [ - 2.136 i - 1.602 j ]*10^-8  + [ 2.136 i - 2.848 j ]*10^-8

                  Fc = [ - 4.45 * 10^-8 j ] N  

3 0
4 years ago
A weight lifter is trying to do a bicep curl with a weight of 300 N. At the "sticking point", the moment arm of this weight is 3
lesantik [10]

Answer:

The weight lifter would not get past this sticking point.

Explanation:

Generally torque applied on the weight is mathematically represented as

             T =  F z

To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm = \frac{2}{100} = 0.02m for z the perpendicular distance

So Elbow Torque is   T_e= 4000 * 0.02

                                   = 80Nm

 To obtain the torque required we substitute 300 N for F and 30cm =\frac{30}{100} = 0.3 m

  So the Required Torque is T_R = 300 *0.3

                                                     =90Nm

Now since   T_e < T_R it mean that the weight lifter would not get past this sticking point

                                   

7 0
3 years ago
What do understand by the efficiency of a machine? By using a block and tackel a man can raise a load of 720 N by an effort of 1
motikmotik

Answer:

Efficiency of a machine is how well the machine works and what the machine is capable of doing.

Mechanical advantage=Load/Effort.

720/180=4

6 0
3 years ago
Hello people ~
Novosadov [1.4K]

Answer:

Copper

Explanation:

Capacitance is directly proportional to dielectric constant

Aluminium and zinc are highly reactive and have high dielectric contact.

Copper has less dielectric constant hence capacitance will decrease

3 0
2 years ago
A machine is currently set to a feed rate of 5.921 inches per minute (IPM). Te machinist changes this setting to 6.088 IPM. By h
lukranit [14]

Answer:

By 16.7% or 0.167 IPM

Explanation:

Substracting the final IPM (6.088) to the initial IPM (5.921) gives us the net difference, which is how much did it increase in IPM. Multiplying this number by 100 gives us the percentual increase in the feed rate.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of oneâs birth. The on
    11·1 answer
  • At what time of year is the intensity of solar radiation striking each of earth's hemispheres weakest?
    6·1 answer
  • A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest ona horizontal floor. It is then pushed in a straight line for1.20 m
    12·1 answer
  • What is a method to predict an earthquake?
    8·1 answer
  • A car passes point “A” and then 120 meters later. It’s velocity was measured 21 m/s. If it’s acceleration was constant at 0.853
    10·1 answer
  • An object is positively charged if it has more what​
    8·1 answer
  • If you answe my question ill get you 50 pionts The smallest piece of matter that still has the properties of an element is a(n)
    12·1 answer
  • Answer (soon please)
    8·1 answer
  • True or false? A system must contain more than one object.
    12·1 answer
  • If the depth of water in a well is 10m, what is the pressure exerted by it the bottom of the well ? ( Use g = 10 m/s2)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!