Answer:
P2=0.385atm
Explanation:
step one:
Given that the temperature T1= 60 Celcius
we can convert this to kelvin by adding 273k to 60 Celcius
we have T1= 333k
pressure P1= 0.470 atm
step two:
we know that the standard temperature is T2= 273K
Applying the temperature and pressure relationship we have
P1/T1=P2/T2
substituting our given data we have
0.47/333=P2/273
cross multiply we have
P2= (0.47*273)/333
P2= 128.31/333
P2=0.385 atm
Answer:
56.69905
Explanation:
The conversion factor from pounds to kilograms is 0.45359237, which means that 1 pound is equal to 0.45359237 kilograms.
Answer:
0.013%
Yes, it does. The answer agrees with the statement.
Explanation:
Both conformers are in equilibrium, and it can be represented by the equilibrium equation K:
K = [twist-boat]/[chair]
The free energy between them can be calculated by:
ΔG° = -RTlnK
Where R is the gas constant (8.314 J/mol.K), and T is the temperature (25°C + 273 = 298 K).
ΔG° = 5.3 kcal/mol * 4.182 kJ/kcal = 22.165 kJ/mol = 22165 J/mol
22165 = -8.314*298*lnK
-2477.572lnK = 22165
lnK = -8.946
K = 
K = 1.30x10⁻⁴
[twist-boat]/[chair] = 1.30x10⁻⁴
[twist-boat] = 1.30x10⁻⁴[chair]
The percentage of the twist-boat conformer is:
[twist-boat]/([twist-boat] + [chair]) * 100%
1.30x10⁻⁴[chair]/(1.30x10⁻⁴[chair] + [chair]) *100%
0.013%
The statement about the conformers is that the chair conformer is more stable, and because of that is more present. So, the answer agrees with it.
Nonrenewable<span> energy </span>resources, like coal, nuclear, oil, and natural gas, are available in limited supplies. This is usually due to the long time it takes for them to be replenished.Renewable resources<span> are replenished naturally and over relatively short periods of time</span>