In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
v = average speed of movement of the Southwest Indian Ridge = 20 mm/year
d = distance moved by the Southwest Indian Ridge = 100 mm
t = number of years required to move distance "d"
distance traveled is given as
d = v t
inserting the above values in the formula
100 mm = (20 mm/year) t
dividing both side by 20 mm/year
t = 100 mm/(20 mm/year)
t = 5 years
The answer is: A compound can be separated by physical means.
the first one Is right answer
Answer:
Explanation:
mass of the water being lifted per second
m = volume x density
= 6.2 x 1 = 6.2 kg
height by which water being lifted
h = 75 - 21
= 54 m
increase in potential energy of water per second
mgh
6.2 x 9.8 x 54
= 3281.04 J /s
= 3281.04 W.