Answer: See description
Explanation:
Kepler's laws have three principal points:
1. planets orbit the sun in elliptical paths
2. the orbial period is related to the orbital distance by 
where T is the orbital period and d is the orbital distance, T is in years and d is measured in units of the earth sun distance.
3. planets closer to the sun move faster than planets far away from it.
Newton:
Newton discovered that there is a consequence to the gravity exerted by objects: mass, the heavier the planet, the more gravitational force it posseses ( thats why we orbit the sun)
with the gravitational force
newton discovered the inverse-quadratic relationship between the distance of the planets and the acceleration exerted by the force one could exert on another.
Kepler's laws were mostly based on observed evidence with quantitative relationships between the mentioned variables. Newton's laws are based on calculus and symbolic equations. While Kepler's mode is basic, Newton took another step in and build a more general model for gravity (which was improved by general relativity later). In a nutshell Newton proved the scientific causes for Kepler's laws...
Accept a pair of nonbonding electrons,a Lewis acid is an electron-pair acceptor. A Lewis<span> base is any </span>substance, such as the OH-<span> ion, that </span>can<span> donate a pair of nonbonding electrons. </span>A Lewis<span> base is therefore an electron-pair donor.</span>
Answer:
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
Explanation:
Step 1: Data given
Volume = 500 mL = 0.500 L
The concentration sodium sulfate = 2.104 M
Step 2: The equation
Na2SO4 → 2Na+ + SO4^2-
For 1 mol Na2SO4 we have 2 moles sodium ion (Na+) and 1 mol sulfate ion (SO4^2-)
Step 3: Calculate the concentration of the ions
[Na+] = 2*2.104 M = 4.208 M
[SO4^2-] = 1*2.104 M = 2.104 M
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa
Hi,
The answer should be C.
Hope this helps, if you’d like further explanation please let me know.