Answer:
2.67 m
Explanation:
k = Spring constant = 1.5 N/m
g = Acceleration due to gravity = 9.81 m/s²
l = Unstretched length
Frequency of SHM motion is given by

Frequency of pendulum is given by

Given in the question


The unstretched length of the spring is 2.67 m
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.

- To find the answer, we have to find the tension,

- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,

Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1
Answer:
L = 1.11 x
m, is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Explanation:
Solution:
Data Given:
Heat Energy = 52000 J
Dielectric Constant of the plastic Bag = 3.7 = K
Thickness = 2.6 x
m =d
V = 610 volts
A = width x Length
width = 20 cm = 20 x
m
Length = ?
So,
we know that,
U = 1/2 C Δ
U = 52000 J
C = ?
V = 610 volts'
So,
U = 1/2 C Δ
52000 J = (0.5) x (C) x (
)
C = 0.28 F
And we also know that,
C = 
E = 8.85 x 
K = 3.7
A = 0.20 x L
d = 2.6 x
m
Plugging in the values into the formula, we get:
0.28 = 
Solving for L, we get:
L = 1.11 x
m,
is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.