<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
Answer:
The crust is made of solid rocks and minerals. Beneath the crust is the mantle, which is also mostly solid rocks and minerals, but punctuated by malleable areas of semi-solid magma. At the center of the Earth is a hot, dense metal core.
Explanation:
Answer:
Option C:- that is equal to mass of an proton.
Explanation:
Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams, which scientists define as one atomic mass unit (amu) or one Dalton. While electron has mass of 9.31 ×10⁻¹⁹.
The correct answer is greenhouse gases. It is the most abundant gases among the choices in the atmosphere. These gases are water vapor, methane, nitrous oxide, ozone and carbon dioxide. Without these gases, the temperature of Earth will be about -18 degrees Celsius.