Answer: False
Explanation: False, what if its in space?
The mass of the blood is 5.8 kg.
<em>V</em> = 5.5 L = 5500 mL
Mass = 5500 mL × (1.06 g/1 mL) = 5800 g = 5.8 kg
The mass of 2.64 moles of water is 47.56 grams
Answer:
30%
Explanation:
<em>This is the chemical formula for zinc bromate: Zn(BrO₃)₂. Calculate the mass percent of oxygen in zinc bromate. Round your answer to the nearest percentage.</em>
Step 1: Determine the mass of 1 mole of Zn(BrO₃)₂
M(Zn(BrO₃)₂) = 1 × M(Zn) + 2 × M(Br) + 6 × M(O)
M(Zn(BrO₃)₂) = 1 × 65.38 g/mol + 2 × 79.90 g/mol + 6 × 16.00 g/mol
M(Zn(BrO₃)₂) = 321.18 g/mol
Step 2: Determine the mass of oxygen in 1 mole of Zn(BrO₃)₂
There are 6 moles of atoms of oxygen in 1 mole of Zn(BrO₃)₂.
6 × m(O) = 6 × 16.00 g = 96.00 g
Step 3: Calculate the mass percent of oxygen in Zn(BrO₃)₂
%O = mO/mZn(BrO₃)₂ × 100%
%O = 96.00 g/321.18 g × 100% ≈ 30%
Answer:
The
of a substrate will be "10 μM".
Explanation:
The given values are:

![[Substract] = 40 \ \mu M](https://tex.z-dn.net/?f=%5BSubstract%5D%20%3D%2040%20%5C%20%5Cmu%20M)

Reaction velocity, 
As we know,
⇒ ![Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}](https://tex.z-dn.net/?f=Vo%3D%5Cfrac%7BK_%7Bcat%7D%5BE_%7Bt%7D%5D%5BS%5D%7D%7BK_%7Bm%7D%2B%5BS%5D%7D)
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
On subtracting "40" from both sides, we get
⇒ 
⇒ 