Answer:
# Program is written in Python Programming Language
# Comments are used for explanatory purpose
# Program starts here
# Accept input
Steps = input (Number of Steps: ")
# Calculate distance
distance = float(2000) * float(steps)
#Print Formatted Result
print('%0.2f' % distance)
# End of Program
.--------
The above program converts number of steps to miles.
At line 5, the number of steps is inputted and stored in variable named Steps.
At line 6, the number of miles is calculated by multiplying 2000 by the content of variable Steps
The result is printed at line 8
Answer:
135 hour
Explanation:
It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.
We have to find the time necessary to achieve the same concentration at a 6 mm position.
we know that
where x is distance and t is time .As the temperature is constant so D will be also constant
So
then
we have given
and we have to find
putting all these value in equation

so
Answer:
3.03 INCHES
Explanation:
According to ASTM D198 ;
Modulus of rupture = ( M / I ) * y ----- ( 1 )
M ( bending moment ) = R * length of span / 2
= (120 * 10^3 ) * 48 / 2 = 288 * 10^4 Ib-in
I ( moment of inertia ) = bd^3 / 12
= ( 2 )*( d )^3 / 12 = 2d^3 / 12
b = 2 in , d = ?
length of span = 4 * 12 = 48 inches
R = P / 2 = 240 * 10^3 / 2 = 120 * 10^3 Ib
y ( centroid distance ) = d / 2 inches
back to equation ( 1 )
( M / I ) * y
940.3 ksi = ( 288 * 10^4 / 2d^3 / 12 ) * d / 2
= ( 288 * 10^4 * 12 ) / 2d^3 ) * d / 2
940300 = 34560000* d / 4d^3
4d^3 ( 940300 ) = 34560000 d ( divide both sides with d )
4d^2 = 34560000 / 940300
d^2 = 9.188 ∴ Value of d ≈ 3.03 in
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Answer:
The strength coefficient is K = 591.87 MPa
Explanation:
We can calculate the strength coefficient using the equation that relates the tensile strength with the strain hardening index given by

where Sut is the tensile strength, K is the strength coefficient we need to find and n is the strain hardening index.
Solving for strength coefficient
From the strain hardening equation we can solve for K

And we can replace values

Thus we get that the strength coefficient is K = 591.87 MPa