1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
15

How does the local economy influence behavior?

Engineering
1 answer:
alexgriva [62]3 years ago
3 0
For the general public, the main impact is the cost of living. The economy has a direct impact on our spending ability. An economic recession generally leads to an increased cost of living. ... The countries currency is also generally affected during a recession, which contributes to inflation of prices.
You might be interested in
Consider a fully-clamped circular diaphragm poly-Si with a radius of 250 μm and a thickness of 4 μm. Assume that Young’s modulus
Alina [70]

Answer:

Explanation:

find attached the solution to the question

4 0
3 years ago
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
A 132mm diameter solid circular section​
Ganezh [65]

Answer:

not sure if this helps but

5 0
3 years ago
Consider casting a concrete driveway 40 feet long, 12 feet wide and 6 in. thick. The proportions of the mix by weight are given
Akimi4 [234]

Answer:

Weight of cement = 10968 lb

Weight of sand = 18105.9 lb

Weight of gravel = 28203.55 lb

Weight of water = 5484 lb

Explanation:

Given:

Entrained air = 7.5%

Length, L = 40 ft

Width,w = 12 ft

thickness,b= 6 inch, convert to ft = 6/12 = 0.5 ft

Specific gravity of sand = 2.60

Specific gravity of gravel = 2.70

The volume will be:

40 * 12 * 0.5 = 240 ft³

We need to find the dry volume of concrete.

Dry volume = wet volume * 1.54 (concrete)

Dry volume will be = 240 * 1.54 = 360ft³

Due to the 7% entarained air content, the required volume will be:

V = 360 * (1 - 0.07)

V = 334.8 ft³

At a ratio of 1:2:3 for cement, sand, and gravel respectively, we have:

Total of ratio = 1+2+3 = 6

Their respective volume will be =

Volume of cement = \frac{1}{6}*334.8 = 55.8 ft^3

Volume of sand = \frac{2}{6}*334.8 = 111.6 ft^3

Volume of gravel = \frac{3}{6}*334.8 = 167.4 ft^3

To find the pounds needed the driveway, we have:

Weight = volume *specific gravity * density of water

Specific gravity of cement = 3.15

Weight of cement =

55.8 * 3.15 * 62.4 = 10968 pounds

Weight of sand =

111.6 * 2.60 * 62.4 = 18105.9 lb

Weight of gravel =

167.4 * 2.7 * 62.4 = 28203.55 lb

Given water to cement ratio of 0.50

Weight of water = 0.5 of weight of cement

= 1/2 * 10968 = 5484 lb

4 0
3 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
Other questions:
  • Describe the steps, tools, and technology needed in detail and
    12·1 answer
  • Machine movement can be divided into what two main categories?
    11·2 answers
  • Represent the following sentence by a Boolean expression:
    11·1 answer
  • One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu
    11·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • Consider a 5 m long, air-filled section of a coaxial transmission line, given that the radius of the inner conductor is 10 cm an
    7·1 answer
  • E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the read- and write-actions to the computation and show t
    12·1 answer
  • Explain what a margin of safety is in driving as well as how it can help minimize risk.
    14·1 answer
  • Is EPA is the organization that was formed to ensure safe and health working conditions for workers by setting and enforcing sta
    15·1 answer
  • Two routes connect an origin and a destination. Routes 1 and 2 have performance functions t1 = 2 + X1 and t2 = 1 + X2, where the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!