Answer:
Technician A only
Explanation:
Rapid wear of the sealing ring and the seal ring groove are result of excessive end play
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
The time taken will be "1 hour 51 min". The further explanation is given below.
Explanation:
The given values are:
Number of required layers:
= 
= 
Diameter (d):
= 1.25 mm
Velocity (v):
= 40 mm/s
Now,
The area of one layer will be:
= 
= 
The area covered every \second will be:
= 
= 
= 
The time required to deposit one layer will be:
= 
= 
The time required for one layer will be:
= 
∴ Total times required for one layer will be:
= 
= 
So,
Number of layers = 152
Therefore,
Total time will be:
= 
= 
= 
Answer:
Explanation:
Resultant force = pressure * Projection area.
For irregular shape => Force resolving method.
Horizontal component = centroidal pressure * projected area.
Vertical force = unit weight * volume of the water displaced