Answer:
my name is Deepika Pandey anion I am 9 years old my father name is Dinesh Pandey my name is and my sister name is sister name is a
The phenomena<span> of </span>atmospheric<span> electricity are of three kinds. ..... In the Earth-</span>ionosphere cavity, the electric field<span> and conduction current in the lower </span>atmosphere<span> </span>
Answer:
21.3 V, 1.2 A
Explanation:
1.
These resistors are in series, so the net resistance is:
R = R₁ + R₂ + R₃
R = 20 + 30 + 45
R = 95
So the current is:
V = IR
45 = I (95)
I = 9/19
So the voltage drop across R₃ is:
V = IR
V = (9/19) (45)
V ≈ 21.3 V
2.
First, we need to find the equivalent resistance of R₂ and R₃, which are in parallel:
1/R₂₃ = 1/R₂ + 1/R₃
1/R₂₃ = 1/10 + 1/10
R₂₃ = 5
Now we find the overall resistance by adding the resistors in series:
R = R₁ + R₂₃ + R₄
R = 10 + 5 + 10
R = 25
So the current through R₁ is:
V = IR
30 = I (25)
I = 1.2 A
Answer:
<em>Time period of pendulum is 2.02 s.</em>
Explanation:
A <em>simple pendulum</em> is a device which consists of mass m hanging from the string of length L attached to the some point.When displaced and released its swings back and forth with periodic motion.
The time period of pendulum is defined as time taken by the pendulum to complete one full oscillation . it is denoted by T.
By <em>Huygens law of period of pendulum</em>,
T = 2π
eqn 1
where L is the length of pendulum,
g is acceleration due to gravity
<em>Period of pendulum is independent of the mass of pendulum,</em>
<em />
Substituting values in eqn 1
T = 2π 
T = 2.02 s
<em>Time period of pendulum is 2.02 s.</em>