Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572
Explanation:
There's a massive amount, just think of anything everyday. Like a table on the floor, or when your walking around and putting pressure on the floor. When you squeeze something which is solid. Anything like that will do.
Answer:
v = 3.7 m/s
Explanation:
As the swing starts from rest, if we choose the lowest point of the trajectory to be the zero reference level for gravitational potential energy, and if we neglect air resistance, we can apply energy conservation as follows:
m. g. h = 1/2 m v²
The only unknown (let alone the speed) in the equation , is the height from which the swing is released.
At this point, the ropes make a 30⁰ angle with the vertical, so we can obtain the vertical length at this point as L cos 30⁰, appying simply cos definition.
As the height we are looking for is the difference respect from the vertical length L, we can simply write as follows:
h = L - Lcos 30⁰ = 5m -5m. 0.866 = 4.3 m
Replacing in the energy conservation equation, and solving for v, we get:
v = √2.g.(L-Lcos30⁰) = √2.9.8 m/s². 4.3 m =3.7 m/s
Explanation:
Given that,
Mass of the rock climber, m = 90 kg
Original length of the rock, L = 16 m
Diameter of the rope, d = 7.8 mm
Stretched length of the rope, 
(a) The change in length per unit original length is called strain. So,

(b) The force acting per unit area is called stress.

(c) The ratio of stress to the strain is called Young's modulus. So,

Hence, this is the required solution.