If the core were to cool completely, the planet would grow cold and dead. It also would get a little dark: Power utilities pull radiant heat from Earth's crust and use it to heat water, the steam from which powers turbines to create electricity.Cooling also could cost us the magnetic shield around the planet created by heat from the core. This shield protects Earth from cosmic radiation. The shield is created by a convection process caused by constantly moving iron. Like the planet itself, Earth's core is constantly spinning. Some scientists think it's moving even faster than the rest of the planet. The friction converts kinetic energy into electrical and magnetic energy that forms the field, which deflects harmful, charged particles emanating from the sun toward the north and south poles. Your welcome :)
<span>We use the formula PV = nRT. P = 758 torr = 0.997 atm. V = 3.50 L. T = 35.6 C = 308.15 K. R = 0.0821. Rearranging the equation gives up n = PV/Rt and we get .0138 moles of butane. Mass of 0.0138 moles of butane = .0138 x 58.12 = 8.02g.</span>
To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.
Just need some point sorry
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole