Answer:
J.J.Thomson discovered negatively charged particles by cathode ray tube experiment in the year 1897. The particles were name electrons.
Answer:
it woul be 263
Explanation:
becaue it adds up like that
The radioactive decay obeys first order kinetics
the rate law expression for radioactive decay is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
Where
A0 = initial concentration
At = concentration after time "t"
t = time
k = rate constant
For first order reaction the relation between rate constant and half life is:

Let us calculate k
k = 0.693 / 72 = 0.009625 years⁻¹
Given
At = 0.25 A0

time = 144 years
So after 144 years the sample contains 25% parent isotope and 75% daughter isotopes**
Simply two half lives
Butterflies are cold-blooded and need the light from the sun to warm the muscles they use to fly. Not only do butterflies like the sun, the plants the they thrive on need full direct sun. Most plants need at least 8 hours of sunlight to bloom properly and provide enough nectar.
Number of electron pairs = \frac{1}{2}[V+N-C+A]
2
1
[V+N−C+A]
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
SbCl_5SbCl
5
:
In the given molecule, antimony is the central atom and there are five chlorine as monovalent atoms.
The number of electron pairs are 5 that means the hybridization will be sp^3dsp
3
B and geometry of the molecule will be trigonal bipyramidal.