Answer : The energy removed must be, -67.7 kJ
Solution :
The process involved in this problem are :

The expression used will be:
![\Delta H=[m\times c_{p,g}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bp%2Cg%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2Bm%5Ctimes%20%5CDelta%20H_%7Bvap%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released by the reaction = ?
m = mass of benzene = 125 g
= specific heat of gaseous benzene = 
= specific heat of liquid benzene = 
= enthalpy change for vaporization = 
Molar mass of benzene = 78.11 g/mole
Now put all the given values in the above expression, we get:
![\Delta H=[125g\times 1.06J/g.K\times (353.0-(425.0))K]+125g\times -434.0J/g+[125g\times 1.73J/g.K\times (335.0-353.0)K]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B125g%5Ctimes%201.06J%2Fg.K%5Ctimes%20%28353.0-%28425.0%29%29K%5D%2B125g%5Ctimes%20-434.0J%2Fg%2B%5B125g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28335.0-353.0%29K%5D)

Therefore, the energy removed must be, -67.7 kJ
mass of pentane : = 30.303 g
moles of Al₂(CO₃)₃ : = 0.147
<h3>Further explanation</h3>
Given
1. Reaction
C₅H₁₂+8O₂→6H₂O+5CO₂.
45.3 g water
2. 2AlCl₃ + 3MgCO₃ → Al₂(CO₃)₃ + 3MgCl₂
37.2 MgCO₃
Required
mass of pentane
moles of Al₂(CO₃)₃
Solution
1. mol water = 45.3 : 18 g/mol = 2.52
From equation, mol ratio of C₅H₁₂ : H₂O = 1 : 6, so mol pentane :
= 1/6 x mol H₂O
= 1/6 x 2.52
= 0.42
Mass pentane :
= mol x MW
= 0.42 x 72.15 g/mol
= 30.303 g
2. mol MgCO₃ : 37.2 : 84,3139 g/mol = 0.44
mol Al₂(CO₃)₃ :
= 1/3 x mol MgCO₃
= 1/3 x 0.44
= 0.147
I am not sure about the first question but the temperature has an important role in this situation because as the temp goes up particles moves at a faster speed and spread out every where.
Oil is more dense than alcohol, but less dense than water. The molecules that make up the oil are larger than those that that make up water, so they cannot pack as tightly together as the water molecules can. They take up more space per unit area and are less dense.