Answer:
Coefficient of friction = 0.836
Explanation:
If v be the speed after one quarter of the circular path
v² = 2as = 2 x 1.85 x 2πr/4 ; v²/r = 1.85 x 3.14 = 5.8
tangential acceleration = 5.8 m/s²
radial acceleration = v² /r = 5.8
total acceleration = √2 x 5.8
m x√2 x 5.8 = m x g xμ
μ = √2 x 5.8 / 9.8 = 0.836
Answer:
A) In northern hemisphere, position of the earth is towards to the sun.
B) In Southern hemisphere, position is away from the sun.
Explanation:
A) In the month of June in the northern hemisphere, the axis of the earth is usually tilted at an angle of about 23.5°. During this period, it revolves around round the sun with one complete revolution of 365 days. Now for the duration of this rotation, the position of the earth is that it leans into the sun when the Sun rises to its lowest Midday position in the sky .
B) For the southern hemisphere, it undergoes the same rotation as in the northern hemisphere. Just that it is usually in the month of December and the position of the earth is that it leans away from the sun when the Sun rises to its lowest Midday position in the sky .
Angular width is 3 x 10^-3
Let D be the distance between source and screed d the distance between coherent source then for central diffraction maxima,
where λ is wavelength
Given:
λ = 450 nm = 450×10^−9m
d = 0.3x10^−3m, D = 1m
W = 2 x 450×10^−9/0.3x10^−3*1
To Find:
Angular width
Solution: The width of the central maxima is nothing but the difference between the positions of the first two minima. Hence we will use the expression for the position of minima and accordingly obtain the expression of the width of central maxima and secondary maxima
θ = W/D
θ = 2 x 450×10^−9/0.3x10^−3*1/1 = 3 x 10^-3
Hence, angular width is 3 x 10^-3
Learn more about Angular width here:
brainly.com/question/25292087
#SPJ4
Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Answer:
Explanation:
We shall apply the theory of
heat lost = heat gained .
heat lost by water = mass x specific heat x temperature diff
= .285 x 4190 x ( 75.2 - 32 ) = 51587.28 J
heat gained by ice to attain temperature of zero
= m x 2100 x 22.8 = 47880 m
heat gained by ice in melting = latent heat x mass
= 334000m
heat gained by water at zero to become warm at 32 degree
= m x 4190 x 32 = 134080 m
Total heat gained = 515960 m
So
515960 m = 51587.28
m = .1 kg
= 100 gm